Mining Frequent Patterns from Spatio- Temporal Data Sets: a Survey
نویسندگان
چکیده
Space and time are implicit in every activity of life. Every real-world object has its past, present, future and hence is intrinsically tied up with location and time. Storing spatio-temporal attributes in the databases along with the thematic attributes enriches the data and the inherent knowledge stored in the database. Spatio-temporal databases provide description of real-world phenomenon in a spatio-temporal framework and helps to build information systems and services that are more comprehensive and intelligent. This paper highlights the importance and applications of spatio-temporal pattern mining and provides a brief survey of key mining techniques for discovering three types of spatio-temporal patterns – sequential patterns, cooccurrence patterns and cascaded patterns specifically from event data sets and trajectory data sets.
منابع مشابه
Mining Spatio-Temporal Patterns in Trajectory Data
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to th...
متن کاملMining Trajectory Patterns by Incorporating Temporal Properties
Spatio-temporal patterns extracted from historical trajectories of moving objects unveil important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of regional symbols and discover frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations in the original dat...
متن کاملSpatio-Temporal Data Mining: A Survey of Problems and Methods
Large volumes of spatio-temporal data are increasingly collected and studied in diverse domains including, climate science, social sciences, neuroscience, epidemiology, transportation, mobile health, and Earth sciences. Spatio-temporal data differs from relational data for which computational approaches are developed in the data mining community for multiple decades, in that both spatial and te...
متن کاملA Survey of Spatial, Temporal and Spatio-temporal Data Mining
Spatio-temporal data sets are often very large and difficult to analyze and display. Since they are fundamental for decision support in many application contexts, recently a lot of interest has arisen toward data-mining techniques to filter out relevant subsets of very large data repositories as well as visualization tools to effectively display the results. In this paper we propose a data-mini...
متن کاملGeT_Move: An Efficient and Unifying Spatio-temporal Pattern Mining Algorithm for Moving Objects
Recent improvements in positioning technology has led to a much wider availability of massive moving object data. A crucial task is to find the moving objects that travel together. Usually, these object sets are called spatio-temporal patterns. Due to the emergence of many different kinds of spatio-temporal patterns in recent years, different approaches have been proposed to extract them. Howev...
متن کامل